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 In this study, the unified hybrid censored approach is employed to 

estimate the parameters of the inverse Weibull distribution, as well as 

the survival and hazard rate functions. Parameter estimates are obtained 

using both Bayesian and maximum likelihood approaches, with 

Bayesian estimates acquired through Lindley’s approximation method 

using three distinct balanced loss functions. These encompass both 

symmetric and asymmetric balanced loss functions, specifically the 

balanced squared error (BSE) loss function, the balanced linear 

exponential (BLINEX) loss function, and the balanced general entropy 

(BGE) loss function. We conduct a simulation study to compare the 

effectiveness of various estimators, and a real-world data analysis is 

presented to illustrate practical implementation. Ultimately, our 

findings indicate that Bayesian parameter estimates consistently 

outperform their maximum likelihood counterparts across all methods.. 
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1. Introduction 

In the field of reliability analysis, data often undergo 

censoring due to cost and time constraints. Two commonly 

employed censoring schemes are Type-I and Type-II. Type-I 

censoring concludes the experiment at a predetermined time 

𝑇 , recording the observed number of failures. Conversely, 

Type-II censoring entails waiting until a specified number 𝑑 

of failures occurs. Epstein [23] introduced a hybrid censoring 

scheme that combines Type-I and Type-II to address the 

limitations of each. In this Type-I hybrid scheme, the 

experiment concludes at 𝑇∗ = min{𝑇, 𝑌𝑑:𝑛} , where 𝑌𝑑:𝑛 

represents the failure time of the 𝑑-th unit. Similarly, Childs et 

al. [18] proposed a Type-II hybrid censoring scheme, 

concluding the experiment at 𝑇∗ = max{𝑇, 𝑌𝑑:𝑛}. However, it 

was discovered that the hybrid censoring schemes also had 

limitations similar to their Type-I and Type-II counterparts. To 

overcome these drawbacks, Chandrasekar et al. [16] 

introduced generalized hybrid censoring schemes. In 

generalized Type-I hybrid censoring, predefined integers 𝑘 

and 𝑑 (𝑑 < 𝑛) and a fixed time 𝑇 are chosen. The experiment 

concludes at 𝑇∗ = min{𝑇, 𝑌𝑑:𝑛}  if the 𝑘 -th failure occurs 

before 𝑇, or at 𝑌𝑘:𝑛 if the 𝑘-th failure occurs after 𝑇. Similarly, 

the generalized Type-II hybrid censoring involves specifying 
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𝑑 , time thresholds 𝑇1  and 𝑇2  (𝑇1 < 𝑇2 ), and concludes at 

𝑇1, 𝑌𝑑:𝑛, or 𝑇2 based on the timing of the 𝑑-th failure. 

Despite the generalized schemes aiming to overcome 

previous disadvantages, they also have limitations. In 

generalized Type-I hybrid censoring, there is a possibility of 

not obtaining the 𝑑-th failure within the pre-fixed time. In the 

case of generalized Type-II hybrid censoring, obtaining an 

effective sample size of zero or a very small value is possible. 

To address these issues, a unified hybrid censoring scheme 

(UHCS) was proposed by Balakrishnan et al. [12]. 

In the context of reliability analysis, data often encounter 

censoring due to cost and time constraints. Two widely used 

censoring schemes are Type-I and Type-II. In Type-I 

censoring, the experiment terminates at a predetermined time 

T, and the number of failures observed is recorded. 

Conversely, Type-II censoring involves waiting until a 

specified number (𝑑)  of failures occur. Epstein [23] 

introduced a hybrid censoring scheme combining Type-I and 

Type-II to address the disadvantages of each. In this Type-I 

hybrid scheme, the experiment terminates at 𝑇∗ =

𝑚𝑖𝑛{𝑇, 𝑌𝑑:𝑛}, where 𝑌𝑑:𝑛 denotes the failure time of the 𝑚𝑡ℎ 

unit. Similarly, Childs et al. [18] proposed a Type-II hybrid 

censoring scheme, where the experiment ends at 𝑇∗ =

𝑚𝑎𝑥{𝑇, 𝑌𝑑:𝑛} . However, it was discovered that the hybrid 

censoring schemes also had limitations similar to their Type-I 

and Type-II counterparts. To overcome these drawbacks, 

Chandrasekar et al. [16] introduced generalized hybrid 

censoring schemes. In the generalized Type-I hybrid 

censoring, pre-defined integers 𝑘  and 𝑑(< 𝑛)  and  

a fixed time 𝑇 are chosen. The experiment terminates at 𝑇∗ =

𝑚𝑖𝑛{𝑇, 𝑌𝑑:𝑛} if the 𝑘𝑡ℎ failure occurs before 𝑇, or at 𝑌𝑘:𝑛 if the 

𝑘𝑡ℎ failure occurs after 𝑇. Similarly, the generalized Type-II 

hybrid censoring involves specifying 𝑑 , time thresholds 𝑇1 

and 𝑇2 (𝑇1 < 𝑇2), and terminates at 𝑇1, 𝑌𝑑:𝑛, or 𝑇2 based on the 

timing of the 𝑑𝑡ℎ failure. Although the generalized schemes 

aimed to avoid previous disadvantages, they too had their 

limitations. The possibility of not obtaining the 𝑑𝑡ℎ  failure 

within the pre-fixed time exists in generalized Type-I hybrid 

censoring. In the case of generalized Type-II hybrid censoring, 

obtaining an effective sample size of zero or a very small 

value is possible. To address these issues, unified hybrid 

censoring scheme (UHCS) were proposed by Balakrishnan et 

al. [12]. 

In the UHCS, an experimenter establishes predetermined 

parameters for a life testing experiment involving 𝑛  items. 

Within this framework, specific values, such as 𝑘 and 𝑑 in the 

range of (0, . . . , 𝑛)  with 𝑘 < 𝑑 < 𝑛 , and 𝑇1 < 𝑇2 , are pre-

defined. If the k-th failure occurs before 𝑇1 , the experiment 

concludes at 𝑚𝑖𝑛{𝑚𝑎𝑥{𝑌𝑑:𝑛, 𝑇1}, 𝑇2} . In the scenario where 

the k-th failure takes place between 𝑇1 and 𝑇2, the experiment 

is terminated at 𝑚𝑖𝑛{𝑌𝑑:𝑛}. If the k-th failure occurs after 𝑇2, 

the experiment concludes at 𝑌𝑘. Under the UHCS framework, 

specified integers 𝑘 and 𝑑 and time thresholds 𝑇1 and 𝑇2 (with 

𝑇1 < 𝑇2  and 𝑘 < 𝑑 < 𝑛) are employed. The UHCS outlines 

various cases of observation as follows 

1. Experiment ending at 𝑇1 if 0 < 𝑦𝑘:𝑛 < 𝑦𝑑:𝑛 < 𝑇1 < 𝑇2.  

2. Experiment ending at 𝑦𝑑:𝑛  if 0 < 𝑦𝑘:𝑛 < 𝑇1 < 𝑦𝑑:𝑛 <

𝑇2.  

3. Experiment ending at 𝑇2 if 0 < 𝑦𝑘:𝑛 < 𝑇1 < 𝑇2 < 𝑦𝑑:𝑛.  

4. Experiment ending at 𝑦𝑑:𝑛  if 0 < 𝑇1 < 𝑦𝑘:𝑛 < 𝑦𝑑:𝑛 <

𝑇2.  

5. Experiment ending at 𝑇2 if 0 < 𝑇1 < 𝑦𝑘:𝑛 < 𝑇2 < 𝑦𝑑:𝑛.  

6. Experiment ending at 𝑦𝑘:𝑛  if 0 < 𝑇1 < 𝑇2 < 𝑦𝑘:𝑛 <

𝑦𝑑:𝑛.  

In this context, 𝑦𝑘:𝑛  and 𝑦𝑑:𝑛  represent the 𝑘 th and 𝑑 th 

order statistics of the sample, respectively, while 𝑇1  and 𝑇2 

denote predetermined stopping times. 

The significance of the UHCS has motivated numerous 

researchers to explore estimation challenges across various 

statistical models employing this censoring scheme. For 

instance, Red and Izanlo [48] conducted a study concentrating 

on obtaining MLEs for the parameters of a generalized 

exponential distribution, utilizing the UHCS. Additionally, 

they derived asymptotic confidence intervals using the 

observed Fisher information matrix. In a similar vein, Panahi 

and Sayyareh [47] delved into the statistical inference of the 

Burr-XII distribution, employing the UHCS. Furthermore, 

Jeon and Kang [32] proposed point and interval estimates for 

the parameters of a Rayleigh distribution within the context of 

the unified hybrid censored sample. Sen et al. [50] explored 

inferential procedures and Bayesian optimal lifetesting issues 

under the UHCS. 

In recent times, numerous researchers have explored 

diverse schemes and various lifetime models across multiple 
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applications. For more detailed information, refer to the works 

by Ferreira and Silva [24], Celik and Guloksuz [15], Sultan 

and Emam [54], Emam and Sultan [22], Chiou and Chen [17], 

Lone et al. [40, 41], Sindhu et al. [53] Lone and Panahi [39], 

Sarkar [49], Ateya [10], Dutta and Kayal [19], Yan et al. [55], 

Asadi et al. [11], Hasaballah et al. [26], Dutta et al. [20], Abo-

Kasem et al. [3], Elshahhat et al. [21] and Alrashidi et al. [6].  

2. Review of Related Literature 

In life testing and reliability theory, the inverse Weibull 

distribution (IWD) is a frequently employed and well-liked 

model for examining failure time. It has been demonstrated to 

be effective for modeling and analyzing lifetime data in 

various fields such as medical, biological, and engineering 

sciences. Its usefulness was first explored by Keller and 

Kanath [35] for investigating mechanical component decay. 

Nelson [45] used the IWD to model survival data for 

determining the time to breakdown of insulating fluid under 

constant tension. Maximum likelihood (ML) and least squares 

methods for calculating the IWD parameters were described 

by Calabria and Pulcini [14]. Recurrence relations for the 

moments of order statistics for both non-truncated and 

truncated IWD were developed by Mahmoud et al. [44]. The 

generalized IWD was proposed by Gusmão et al. [25] 

Shahbaz et al. [51] constructed the Kumaraswamy IWD. 

Abbas et al. [2] established the Topp Leone IWD, while 

Shuaib et al. [52] generalised the IWD for lifespan modelling. 

IWD with Marshall-Olkin alpha power was proposed by 

Basheer et al. [13]. For the bivariate IWD with progressive 

type-II censoring, Muhammed and Almetwally [42] provided 

both Bayesian and non-Bayesian estimate techniques. 

Alshaikh and Baklizi [8] investigated maximum likelihood 

estimation in the context of the inverse Weibull distribution 

with type II censored data. Jana and Bera [31] explored the 

estimation of parameters in the IWD and its application to  

a multi-component stress-strength model. The DUS-

neutrosophic multivariate IWD was recently studied by 

Hassan and Aslam [28]. Several authors have explored the 

IWD, as evidenced in the works of Andrzejczak and 

Bukowski [9], Ilori1 et al. [30], Mahmoud et al. [43], Al-Essa 

et al. [5], Aljeddani and Mohammed [7], Hussam et al. [29], 

Abbas et al. [1], Khalaf et al. [34] and Abo-Kasem et al. [4]. 

The cumulative distribution function (CDF) of the IWD is 

expressed as follows:  

𝐹(𝑦) = 𝑒−𝛼𝑦
−𝛽
, 𝑥 > 0, 𝛼, 𝛽 > 0,  (1) 

and its corresponding probability density function (PDF) is 

given by:  

𝑓(𝑦) = 𝛼𝛽𝑦−(𝛽+1)𝑒−𝛼𝑦
−𝛽
, 𝑥 > 0, 𝛼, 𝛽 > 0.   (2) 

The survival function, denoted by 𝑆(𝑡), is defined as:  

𝑆(𝑡) = 1 − 𝑒−𝛼𝑡
−𝛽
,   (3) 

The hazard rate function, denoted by ℎ(𝑡), is given by:  

ℎ(𝑡) =
𝛼𝛽𝑡−(𝛽+1)𝑒−𝛼𝑡

−𝛽

1−𝑒−𝛼𝑡
−𝛽 .  (4) 

In these expressions, 𝛼 represents the scale parameter, and 

𝛽 denotes the shape parameter. 

Figures 1–4 display the PDF, CDF, survival function, and 

hazard rate function plots. 

 

Figure 1. The PDF graph for the IWD. 
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Figure 2. The CDF graph for the IWD. 

 

Figure 3. The survival function graph for the IWD. 

 

 

Figure 4. The hazard rate function graph for the IWD. 
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We use the inverse Weibull distribution for the following 

reasons: 

• Reliability Analysis: The IWD is commonly used in 

reliability analysis, where data often encounter censoring due 

to cost and time constraints. 

• Lifespan Modeling: The IWD can be applied in lifespan 

modeling, which involves studying the duration or lifetime of  

a particular event or phenomenon. 

• Stress-Strength Models: The IWD can be utilized in 

stress-strength models, which involve assessing the reliability 

or failure probability of a system or component based on the 

comparison of stress and strength variables. 

• Multivariate Distributions: The IWD can be extended to 

multivariate distributions, where multiple variables are 

considered simultaneously, allowing for the analysis of 

complex systems or processes involving multiple factors. 

• Other Applications: The IWD may have potential 

applications in various other fields, such as actuarial science, 

finance, engineering, and environmental studies, depending on 

the specific research or analysis requirements. 

In this manuscript, we tackle the challenges associated 

with estimating the IWD. Utilizing the UHCS, we derive 

MLEs and Bayesian estimators for the IWD. The Bayesian 

estimators are formulated concerning BSE, BLINEX, and 

BGE loss functions, all under Lindley’s approximation. We 

illustrate the practical application of our approach using real-

life datasets. To evaluate the performance of these proposed 

estimators, we conduct  

a simulation study employing both Lindley’s approximation 

and MLE methods, comparing the estimates based on their 

average values and root mean square error (RMSE). 

The paper is organized as follows: In Section 3, we detail 

the derivation of MLEs for the unknown parameters of IWD. 

Section 4 presents approximate confidence intervals that are 

contingent upon the MLEs. In Section 5, we conduct Bayesian 

analysis, employing both symmetric and asymmetric balanced 

loss functions with Lindley’s approximation. Section 6, is 

dedicated to the application of these estimation methods to 

real data sets for illustration purposes. We report the outcomes 

of simulations in Section 7. Results analysis and discussion 

are presented Section 8. Lastly, a concise conclusion is 

provided in Section 9. 

 

3. Maximum Likelihood Estimation 

Given a random sample 𝑌 = (𝑌1, 𝑌2, . . . . . . . . . . . . . 𝑌𝑛) of size 𝑛, 

the likelihood function of IWD based on UHCS can be 

constructed as follows:  

𝐿(𝑦, 𝛽, 𝛼) =
𝑛!

(𝑛−𝐷)!
[∏𝐷

𝑖=1 𝑓(𝑦𝑖)][1 − 𝐹(𝑆)]
𝑛−𝐷 ,       (5) 

(𝐷, 𝑆) =

{
 

 
(𝑏, 𝑇1),         𝑓𝑜𝑟 𝑐𝑎𝑠𝑒(1),

(𝑑, 𝑦𝑑:𝑛),         𝑓𝑜𝑟 𝑐𝑎𝑠𝑒(2)𝑎𝑛𝑑 𝑐𝑎𝑠𝑒(4),

(𝑏2, 𝑇2),         𝑓𝑜𝑟 𝑐𝑎𝑠𝑒(3)𝑎𝑛𝑑 𝑓𝑜𝑟 𝑐𝑎𝑠𝑒(5),

(𝑘, 𝑦𝑘:𝑛),         𝑓𝑜𝑟 𝑐𝑎𝑠𝑒(6),

 

Here, the symbols 𝐷 and 𝑆 represent the number of total 

failures in the experiment up to the stopping time point, 

respectively. For case (1), the values are denoted as (𝑏, 𝑇1), 

for case (2) and case (4) as (𝑑, 𝑦𝑑:𝑛), for case (3) and case (5) 

as (𝑏2, 𝑇2), and for case VI as (𝑘, 𝑦𝑘:𝑛). The variables 𝑏1 and 

𝑏2  represent the number of failures occurring before time 

points 𝑇1  and 𝑇2 , respectively, with the condition that 𝑏 =

𝑏1 = 𝑏2 for case I. 

From (1), (2), and (5), we derive the likelihood function as 

follows:  

𝐿(𝑦; 𝛼, 𝛽) = 𝑍𝛼𝐷𝛽𝐷𝑒−(𝛽+1)∑
𝐷
𝑖=1 ln𝑦𝑖𝑒−𝛼∑

𝐷
𝑖=1𝑦𝑖

−𝛽

[1 − 𝑒−𝛼𝑆
−𝛽
]𝑛−𝐷,(6) 

where 𝑍 =
2𝐷𝑛!

(𝑛−𝐷)!
. 

Hence, the log-likelihood function is given by:

ℓ(𝑦; 𝛼, 𝛽) = ln(𝑍) + 𝐷ln(𝛼) + 𝐷ln(𝛽) − (𝛽 + 1)∑𝐷𝑖=1 ln(𝑦𝑖) − 𝛼 ∑
𝐷
𝑖=1 𝑦𝑖

−𝛽

+(𝑛 − 𝐷)ln[1 − 𝑒−𝛼𝑆
−𝛽
].

   (7) 

 

In order to obtain the MLEs for the unknown parameters 𝛼 

and 𝛽, we must solve a set of equations that are derived by 

taking the first derivatives of the log-likelihood function with 

respect to 𝛽  and 𝛼 , and then setting them to zero: 

𝜕ℓ

𝜕𝛽
=

𝐷

𝛽
+ ∑𝐷𝑖=1 ln𝑦𝑖 + 𝛼∑

𝐷
𝑖=1 𝑦𝑖

−𝛽
ln𝑦𝑖 −

(𝑛−𝐷)    𝛼    𝑆−𝛽ln𝑆    𝑒−𝛼𝑆
−𝛽

1−𝑒−𝛼    𝑆
−𝛽 = 0,   (8) 
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𝜕ℓ

𝜕𝛼
=

𝐷

𝛼
− ∑𝐷𝑖=1 𝑦𝑖

−𝛽
+

(𝑛−𝐷)    𝑆−𝛽𝑒−𝛼𝑆
−𝛽

1−𝑒−𝛼    𝑆
−𝛽 = 0. (9) 

As (8) and (9) are complex and nonlinear, it can be 

challenging to solve them analytically. Therefore, numerical 

methods like the Newton-Raphson method may be used to 

compute the MLEs of the unknown parameters 𝛼 and 𝛽.  

4. Fisher Information Matrix  

Given below is the log-likelihood function’s second derivative 

with regard to the 𝛼  and 𝛽 . 

𝜕2ℓ

𝜕𝛽2
=

−𝐷

𝛽2
− 𝛼∑𝐷𝑖=1 (ln𝑦𝑖)

2𝑦𝑖
−𝛽
−

(𝑛−𝐷)    𝛼    𝑆−𝛽(ln𝑆)2    𝑒−𝛼𝑆
−𝛽

1−𝑒−𝛼    𝑆
−𝛽

−
(𝑛−𝐷)    𝛼2    𝑆−2𝛽(ln𝑆)2    𝑒−2𝛼𝑆

−𝛽

(1−𝑒−𝛼    𝑆
−𝛽
)2

−
(𝑛−𝐷)    𝛼2    𝑆−2𝛽(ln𝑆)2    𝑒−𝛼𝑆

−𝛽

1−𝑒−𝛼    𝑆
−𝛽 ,

    (10) 

𝜕2ℓ

𝜕𝛽𝜕𝛼
=

𝜕2ℓ

𝜕𝛼𝜕𝛽
= ∑𝐷𝑖=1 (ln𝑦𝑖)𝑦𝑖

−𝛽
−

(𝑛−𝐷)    𝑆−𝛽(ln𝑆)    𝑒−𝛼𝑆
−𝛽

1−𝑒−𝛼    𝑆
−𝛽

−
(𝑛−𝐷)    𝛼    𝑆−2𝛽(ln𝑆)    𝑒−2𝛼𝑆

−𝛽

(1−𝑒−𝛼    𝑆
−𝛽
)2

−
(𝑛−𝐷)    𝛼    𝑆−2𝛽(ln𝑆)    𝑒−𝛼𝑆

−𝛽

1−𝑒−𝛼    𝑆
−𝛽

    (11) 

 

𝜕2ℓ

𝜕𝛼2
=

−𝐷

𝛼2
−

(𝑛−𝐷)    𝑆−2𝛽𝑒−2𝛼𝑆
−𝛽

(1−𝑒−𝛼    𝑆
−𝛽
)2

−
(𝑛−𝐷)    𝑆−2𝛽𝑒−𝛼𝑆

−𝛽

1−𝑒−𝛼    𝑆
−𝛽    (12) 

Now, we formulate the approximate confidence intervals 

(ACIs) for the parameters 𝛼 and 𝛽 . utilizing the asymptotic 

normal distribution of the MLEs. This involves the utilization 

of the asymptotic fisher information matrix (FIM). The matrix 

𝐼−1(𝛼, 𝛽)  is computed by taking the expectation of the 

negative values of 10–12, and it can be expressed as follows:

𝐼−1(𝛼, 𝛽) =

(

 
 
−
𝜕2ℓ

𝜕𝛼2
−
𝜕2ℓ

𝜕𝛼𝜕𝛽

−
𝜕2ℓ

𝜕𝛽𝜕𝛼
−
𝜕2ℓ

𝜕𝛽2 )

 
 

(𝛼,𝛽)=(�̂�,�̂�)

−1

= (
𝑣𝑎�̂�(�̂�) 𝑐𝑜𝑣(�̂�, �̂�)

𝑐𝑜𝑣(�̂�, �̂�) 𝑣𝑎�̂�(�̂�)
) , 

 

The CIs for parameters 𝛼 and 𝛽 with a confidence level of 

(1 − 𝜂)100% are determined as follows:  

(�̂� ± 𝑍𝜂/2√𝑣𝑎�̂�(�̂�))    and    (�̂� ± 𝑍𝜂/2√𝑣𝑎�̂�(�̂�)),    respectively. 

The significance of 𝑍𝜂/2  lies in its representation of the 

location on the upper tail of the standard normal distribution 

corresponding to a probability of 𝜂/2.  

5. Bayesian Estimation 

In this section, our focus is on the Bayesian estimation of the 

unknown parameters, the survival function, and the hazard 

rate function of the IWD under the UHCS. We use three 

balanced loss functions, using BSE, BLINEX, and BGE. 

Assuming the following gamma priors for 𝛼 and 𝛽:  

𝜋1(𝛼) ∝ 𝛼
𝑑1−1𝑒−𝑑2𝛼 ,        𝛼 > 0, 

𝜋2(𝛽) ∝ 𝛽
𝑑3−1𝑒−𝑑4𝛽 ,        𝛽 > 0, 

The joint prior distribution for 𝛼 and 𝛽 is  

𝜋(𝛼, 𝛽) ∝ 𝛼𝑑1−1𝛽𝑑2−1𝑒−𝑑1𝛼−𝑑2𝛽 .                 (13) 

For Bayesian estimation, We utilize both symmetric and 

asymmetric balanced loss functions for the Bayesian 

estimation, as explained below: 

5.1. Loss Functions 

A loss function, also known as a cost function or objective 

function, is a mathematical function that measures the penalty 

or cost associated with the difference between the predicted 

values of a model and the true values. In the context of 

Bayesian statistics, loss functions are employed to quantify 

the discrepancy between predicted values and observed 

outcomes. In Bayesian statistics, the loss function is crucial 

for making decisions and assessing the performance of 

Bayesian estimators. When estimating parameters, Bayesian 

methods involve specifying a prior distribution and updating it 

based on observed data to obtain a posterior distribution. The 

loss function helps in evaluating the quality of the Bayesian 

point estimates and determining the optimal decision rule 

under different circumstances. A "balanced" loss function 

typically refers to a loss function that achieves a balance 

between competing considerations, such as bias and variance 

or precision and recall in classification problems. 

Commonly used balanced loss functions in Bayesian 
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statistics include:   

1. Balanced Squared Error Loss (BSE): This loss function 

penalizes the squared difference between predicted and true 

values. It is often used when the goal is to minimize the mean 

squared error. 

2. Balanced LINEX Loss: The BLINEX loss function 

generalizes the balanced squared error loss by introducing a 

linear exponential term. It is particularly useful when there is 

a need to emphasize errors in a specific region of the 

parameter space. 

3. Balanced Generalized Entropy (BGE) Loss: The BGE 

loss is a family of loss functions that includes squared error 

and absolute error as special cases. It is versatile and allows 

for tuning the degree of sensitivity to different levels of errors. 

5.2. Symmetric balanced loss functions 

5.2.1. The BSE loss function 

Jozani et al. [33] presented a generalized balanced loss 

function, denoted as the 

𝐿𝜌,𝜈,𝜙0(𝜙, �̂�) = 𝜈𝜌(�̂�, �̂�0) + (1 − 𝜈)𝜌(𝜙, �̂�),         (14) 

In this context, 𝜈  (with 0 ≤ 𝜈 ≤ 1 ) serves as a weight 

parameter, and 𝜌  denotes a user-defined loss function. The 

target estimator, denoted as �̂�0 , is typically derived using 

methods such as maximum likelihood or least squares. 

Specifically, for the Balanced Squared Error (BSE) loss 

function, we opt for 𝜌(𝜙, �̂�) = (�̂� − 𝜙)2 , resulting in the 

following expression: 

𝐿(𝜙, �̂�) = 𝜈(�̂�0 − �̂�)
2 + (1 − 𝜈)(�̂� − 𝜙)2.  (15) 

The Bayesian estimation for the unknown parameter 𝜙 is 

subsequently provided as: 

�̂�(𝑦) = 𝜈�̂�0 + (1 − 𝜈)𝐸(𝜙|𝑦).   (16) 

In this equation, the parameter 0 ≤ 𝜈 ≤ 1  functions as  

a weight parameter, and 𝜌  represents a user-defined loss 

function. The estimator �̂�0 acts as a general "target" estimator 

for 𝜙 , often derived through methods like maximum 

likelihood, least squares, or unbiasedness. This balanced loss 

function can be tailored to various loss functions, including 

absolute value, squared error, LINEX, and general entropy 

loss functions. By choosing the loss function as 𝜌(𝜙, �̂�) =

(�̂� − 𝜙)2, equation (14) simplifies to the BSE loss function in 

the following manner:  

𝐿(𝜙, �̂�) = 𝜈(�̂�0 − �̂�)
2 + (1 − 𝜈)(�̂� − 𝜙)2,  (17) 

The Bayesian estimation for the unknown parameter 𝜙 is 

subsequently calculated as: 

�̂�(𝑦) = 𝜈�̂�0 + (1 − 𝜈)𝐸(𝜙|𝑦).   (18) 

5.3. Asymmetric balanced loss functions 

5.3.1.The BLINEX loss function 

The BLINEX loss function, incorporating a shape parameter 𝑎 

(where 𝑎 ≠ 0 ), is formulated by defining 𝜌(𝜙, �̂�) =

𝑒𝑎(�̂�−𝜙) − 𝑎(�̂� − 𝜙) − 1 , as elucidated by Zellner [56]. 

Consequently, the Bayesian estimation of 𝜙  utilizing the 

BLINEX function is expressed as: 

�̂�(𝑦) =
−1

𝑎
ln[𝜈𝑒−𝑎�̂�0 + (1 − 𝜈)𝐸(𝑒−𝑎𝜙|𝑦)]. (19) 

5.3.2. The BGE loss function 

The BGE loss function, governed by the shape parameter 𝑎, is 

characterized by 𝜌(𝜙, �̂�) = (
�̂�

𝜙
)𝑎 − 𝑎ln(

�̂�

𝜙
) − 1. Accordingly, 

the Bayesian estimation of 𝜙  employing the BGE loss 

function is articulated as: 

�̂�(𝑦) = [𝜈(�̂�0)
−𝑎 + (1 − 𝜈)𝐸(𝜙−𝑎|𝑦)]

−1

𝑎 . (20) 

The adaptability of balanced loss functions is evident, 

encompassing various special cases, including the maximum 

likelihood estimate and both symmetric and asymmetric 

Bayesian estimates. For instance, under the BSE loss function 

in (18), the Bayesian estimate converges to the maximum 

likelihood estimate when 𝜈 = 1 . Conversely, for 𝜈 = 0 , it 

transforms into the Bayesian estimate relative to the SE loss 

function. Similarly, the Bayesian estimator under the BLINEX 

loss function, as depicted in (19), reduces to the maximum 

likelihood estimate at 𝜈 = 1  and corresponds to the 

asymmetric LINEX loss function at 𝜈 = 0. Likewise, under 

the BGE loss function in (20), the Bayesian estimator reduces 

to the maximum likelihood estimate at 𝜈 = 1 and corresponds 

to the GE loss function at 𝜈 = 0. 

5.4. Lindley’s Approximation 

Lindley’s approach involves employing the Taylor series 

expansion of the function relevant to the posterior moment. 

He introduced an asymptotic solution for the ratio of two 

integrals, commonly encountered in Bayesian estimation (see 

Lindley [38] ). 

The ratio of integrals that arises in Bayesian analysis is 
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expressed as: 

�̂�𝐵(𝛼, 𝛽) = 𝐸[𝑄(𝛼, 𝛽)|𝑦] =
∫𝛼∫𝛽𝑄(𝛼,𝛽)𝑒

ℓ(𝑦|𝛼,𝛽)+𝜌(𝛼,𝛽)𝑑𝛼𝑑𝛽

∫𝛼∫𝛽𝑒
ℓ(𝑦|𝛼,𝛽)+𝜌(𝛼,𝛽)𝑑𝛼𝑑𝛽

.        (21) 

To approximate Lindley’s procedure asymptotically, we 

expand 𝜌(𝛼, 𝛽) = ln[𝜋(𝛼, 𝛽)]  and ℓ(𝛼, 𝛽)  in (21) using  

a Taylor series focused on the MLE of (𝛼, 𝛽): 

�̂�𝐵(𝛼, 𝛽) = 𝐸[𝑄(𝛼, 𝛽)|𝑦] = 𝑄(�̂�, �̂�) +
1

2
∑𝑚𝑖,𝑗 [𝑄𝑖𝑗(�̂�, �̂�)

+2𝑄𝑖(�̂�, �̂�)𝜌𝑗(�̂�, �̂�)]�̂�𝑖𝑗

+
1

2
∑𝑚𝑖,𝑗,𝑠,𝑘 ℓ̂𝑖𝑗𝑠�̂�𝑘(�̂�, �̂�)�̂�𝑖𝑗�̂�𝑠𝑘 ,

(22) 

where, 𝑖, 𝑗, 𝑠, 𝑘 = 1,2, . . . . , 𝑚,  then, 

�̂�𝐵(𝛼, 𝛽) = 𝑄(�̂�, �̂�) +
1

2
[(�̂�𝛼𝛼 + 2�̂�𝛼�̂�𝛼)�̂�𝛼𝛼 + (�̂�𝛽𝛼 + 2�̂�𝛽�̂�𝛼)�̂�𝛽𝛼

+(�̂�𝛼𝛽 + 2�̂�𝛼�̂�𝛽)�̂�𝛼𝛽 + (�̂�𝛽𝛽 + 2�̂�𝛽�̂�𝛽)�̂�𝛽𝛽] +
1

2
[(�̂�𝛼�̂�𝛼𝛼

+�̂�𝛽�̂�𝛼𝛽)(ℓ̂𝛼𝛼𝛼�̂�𝛼𝛼 + ℓ̂𝛼𝛽𝛼�̂�𝛼𝛽 + ℓ̂𝛽𝛼𝛼�̂�𝛽𝛼 + ℓ̂𝛽𝛽𝛼�̂�𝛽𝛽)

+(�̂�𝛼�̂�𝛽𝛼 + �̂�𝛽�̂�𝛽𝛽)(ℓ̂𝛽𝛼𝛼�̂�𝛼𝛼 + ℓ̂𝛼𝛽𝛽�̂�𝛼𝛽 + ℓ̂𝛽𝛼𝛽�̂�𝛽𝛼 + ℓ̂𝛽𝛽𝛽�̂�𝛽𝛽)],

   (23) 

 

where  

ℓ̂ℎ𝑡 =
𝜕ℎ+𝑡ℓ

𝜕𝜙1
ℎ𝜕𝜙2

𝑡
,    𝜌 = ln𝜋(𝜙1, 𝜙2),    𝜌𝑖 =

𝜕𝜌

𝜕𝜙𝑖
,    𝑄𝜙𝑖𝜙𝑗

=
𝜕2𝑄

𝜕𝜙𝑖𝜕𝜙𝑗
    and    𝑄𝜙𝑖 =

𝜕𝑄

𝜕𝜙𝑖
. 

Where ℎ and 𝑡 can take the values 0,1,2,3, and ℎ + 𝑡 equals 3. 

The indices 𝑖  and 𝑗  can be either 1  or 2 , corresponding to 

𝜙1 = 𝛼  and 𝜙2 = 𝛽 , respectively. In this context, ℓ(. , . ) 

represents the log-likelihood function of the observed data, 

and 𝜋(𝜙1, 𝜙2) = 𝜋(𝛼, 𝛽)  denotes the joint prior density 

function of (𝛼, 𝛽) . Additionally, 𝜑𝑖𝑗  stands for the (i, j)-th 

element of the inverse of the FIM. Furthermore, �̂� and �̂� are 

the ML estimators of 𝛼 and 𝛽, respectively.  

The following equations represent the Bayesian estimates 

for different parameters using the BSE, BLINEX, and BGE 

loss functions, where �̂� = [�̂�, �̂�, �̂�(𝑡), ℎ̂(𝑡)]: 

(1) Case of the BSE loss function  

If 𝑄(�̂�, �̂�) = �̂� , then the Bayesian estimate is given by: 

�̂�𝐵𝐵𝑆 = 𝜈�̂�𝑀𝐿 + (1 − 𝜈)[�̂�𝑀𝐿 +
1

2
[(�̂�𝛼𝛼 + 2�̂�𝛼�̂�𝛼)�̂�𝛼𝛼 + (�̂�𝛽𝛼 + 2�̂�𝛽�̂�𝛼)�̂�𝛽𝛼

+(�̂�𝛼𝛽 + 2�̂�𝛼�̂�𝛽)�̂�𝛼𝛽 + (�̂�𝛽𝛽 + 2�̂�𝛽�̂�𝛽)�̂�𝛽𝛽] +
1

2
[(�̂�𝛼�̂�𝛼𝛼 + �̂�𝛽�̂�𝛼𝛽)

× (ℓ̂𝛼𝛼𝛼�̂�𝛼𝛼 + ℓ̂𝛼𝛽𝛼�̂�𝛼𝛽 + ℓ̂𝛽𝛼𝛼�̂�𝛽𝛼 + ℓ̂𝛽𝛽𝛼�̂�𝛽𝛽) + (�̂�𝛼�̂�𝛽𝛼 + �̂�𝛽�̂�𝛽𝛽)

× (ℓ̂𝛽𝛼𝛼�̂�𝛼𝛼 + ℓ̂𝛼𝛽𝛽�̂�𝛼𝛽 + ℓ̂𝛽𝛼𝛽�̂�𝛽𝛼 + ℓ̂𝛽𝛽𝛽�̂�𝛽𝛽)]].

    (24) 

 

(2) Case of the BLINEX loss function  If 𝑄(�̂�, �̂�) = 𝑒−𝑎�̂�, then the Bayesian estimate is given by: 

�̂�𝐵𝐵𝐿 =
−1

𝑎
ln[𝜈    𝑒−𝑎�̂�𝑀𝐿 + (1 − 𝜈){𝑒−𝑎�̂�𝑀𝐿 +

1

2
[(�̂�𝛼𝛼 + 2�̂�𝛼�̂�𝛼)�̂�𝛼𝛼 + (�̂�𝛽𝛼 + 2�̂�𝛽�̂�𝛼)

× �̂�𝛽𝛼 + (�̂�𝛼𝛽 + 2�̂�𝛼�̂�𝛽)�̂�𝛼𝛽 + (�̂�𝛽𝛽 + 2�̂�𝛽�̂�𝛽)�̂�𝛽𝛽] +
1

2
[(�̂�𝛼�̂�𝛼𝛼 + �̂�𝛽�̂�𝛼𝛽)

× (ℓ̂𝛼𝛼𝛼�̂�𝛼𝛼 + ℓ̂𝛼𝛽𝛼�̂�𝛼𝛽 + ℓ̂𝛽𝛼𝛼�̂�𝛽𝛼 + ℓ̂𝛽𝛽𝛼�̂�𝛽𝛽) + (�̂�𝛼�̂�𝛽𝛼 + �̂�𝛽�̂�𝛽𝛽)(ℓ̂𝛽𝛼𝛼�̂�𝛼𝛼

+ℓ̂𝛼𝛽𝛽�̂�𝛼𝛽 + ℓ̂𝛽𝛼𝛽�̂�𝛽𝛼 + ℓ̂𝛽𝛽𝛽�̂�𝛽𝛽)]}].

   (25) 

 

(3) Case of the BGE loss function  

If 𝑄(�̂�, �̂�) = [�̂�]−𝑎 , then the Bayesian estimate is given 

by: 

�̂�𝐵𝐵𝐺 = [𝜈    [�̂�𝑀𝐿]
−𝑎 + (1 − 𝜈){[�̂�𝑀𝐿]

−𝑎 +
1

2
[(�̂�𝛼𝛼 + 2�̂�𝛼�̂�𝛼)�̂�𝛼𝛼

+(�̂�𝛽𝛼 + 2�̂�𝛽�̂�𝛼)�̂�𝛽𝛼 + (�̂�𝛼𝛽 + 2�̂�𝛼�̂�𝛽)�̂�𝛼𝛽 + (�̂�𝛽𝛽 + 2�̂�𝛽�̂�𝛽)�̂�𝛽𝛽]

+
1

2
[(�̂�𝛼�̂�𝛼𝛼 + �̂�𝛽�̂�𝛼𝛽)(ℓ̂𝛼𝛼𝛼�̂�𝛼𝛼 + ℓ̂𝛼𝛽𝛼�̂�𝛼𝛽 + ℓ̂𝛽𝛼𝛼�̂�𝛽𝛼 + ℓ̂𝛽𝛽𝛼�̂�𝛽𝛽)

+(�̂�𝛼�̂�𝛽𝛼 + �̂�𝛽�̂�𝛽𝛽)(ℓ̂𝛽𝛼𝛼�̂�𝛼𝛼 + ℓ̂𝛼𝛽𝛽�̂�𝛼𝛽

+ℓ̂𝛽𝛼𝛽�̂�𝛽𝛼 + ℓ̂𝛽𝛽𝛽�̂�𝛽𝛽)]}]
−1

𝑎 .

        (26) 
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6. Medical Data 

Bladder cancer is a prevalent malignancy affecting millions of 

individuals worldwide, with varying degrees of severity and 

outcomes. Understanding the remission times of bladder 

cancer patients is crucial for evaluating treatment efficacy, 

disease progression, and patient prognosis. Remission time 

refers to the period during which patients remain free of 

cancer after receiving treatment, and its study provides 

valuable insights into the effectiveness of therapeutic 

interventions. 

This application is drawn from Lee and Wang [37] and 

focuses on the remission times (in months) of 128 patients 

afflicted with bladder cancer. Recent analyses of this dataset 

have been conducted in several papers, including Okasha et al. 

[46] Klakattawi [36] and Hamdeni and Gasmi [27]. This data 

is given in Appendix B. 

We applied the Kolmogorov-Smirnov (K-S) test to the 

data to determine if it follows an IWD. The null hypothesis of 

the test is that the data comes from an IWD. The test statistic 

was 0.07149 and the p-value was 0.5069. Since the p-value is 

greater than the significance level of 0.05, we failed to reject 

the null hypothesis. This means that the data is consistent with 

an IWD. In other words, the IWD is a good model for the 

remission times of bladder cancer patients. This is because the 

IWD fits the data more closely than other distributions. We 

also created a plot of the empirical CDF of the data and the 

CDF of the IWD as shown in Figure (5). The plot shows that 

the two CDFs are very close, which further supports the 

conclusion that the IWD is a good model for the remission 

times of bladder cancer patients.  

 

Figure 5. Plots of fitted functions of the IWD. 

Now, we consider the case when the data are censored. We 

generate six artificially UHCS data sets from the uncensored 

data set as: 

1. 𝑇1 = 17.0, 𝑇2 = 25.0, 𝑘 = 90, 𝑑 = 100. In this instance, 

𝐷 = 110, 𝑆 = 𝑇1 = 17.0. 

2. 𝑇1 = 17.30, 𝑇2 = 25.0, 𝑘 = 90, 𝑑 = 103 . In this 

instance, 𝐷 = 103, 𝑆 = 𝑦𝑑:𝑛 = 13.50. 

3. 𝑇1 = 17.8, 𝑇2 = 25.0, 𝑘 = 90, 𝑑 = 105. In this instance, 

𝐷 = 120, 𝑆 = 𝑇2 = 25.0. 

4. 𝑇1 = 9.0, 𝑇2 = 17.0, 𝑘 = 95, 𝑑 = 108. In this instance, 

𝐷 = 108, 𝑆 = 𝑦𝑑:𝑛 = 15.0. 

5. 𝑇1 = 9.0, 𝑇2 = 13.90, 𝑘 = 98, 𝑑 = 108. In this instance, 

𝐷 = 106, 𝑆 = 𝑇2 = 13.90. 

6. 𝑇1 = 9.0, 𝑇2 = 9.50, 𝑘 = 100, 𝑑 = 108. In this instance, 

𝐷 = 100, 𝑆 = 𝑦𝑘:𝑛 = 13.0. 

In the context of Lindley’s approximation, we employed 

non-informative gamma priors for both 𝛼  and 𝛽 . In this 

scenario, the hyperparameters are set to 0 (𝑑1 = 𝑑2 = 𝑑3 =

𝑑4 = 0) . We then investigated the impact of various loss 

functions, namely BSE loss, BLINEX loss, and BGE loss, 

while considering different values of the shape parameter "a" 

for the BLINEX and BGE loss functions. Additionally, we 

explored varying values of "𝜈 " for the parameters 𝛼 = 2.76, 

𝛽 = 1.28 , 𝑆(𝑡 = 0.8) , and ℎ(𝑡 = 0.8) . The comprehensive 

results are outlined in Table 1 in Appendix B.. 

7. Simulation Study 

This section focuses on the comparison of estimation 

performance between classical statistics and Bayesian 

statistics for the IWD distribution. It involves employing both 

the method of ML and the Lindley method within the 

framework of UHCS, considering three types of balanced loss 

functions: BSE, BLINEX, and BGE loss functions. 

A simulation study is conducted to visually elucidate all 

the outcomes expounded in the preceding sections. The 

estimators derived from both the MLE and Bayesian 

estimation methods are procured following the subsequent 

steps:   

• A sample is generated using the IWD model with the 

parameter values 𝛼 = 2.76 and 𝛽 = 1.28. 

• The MLEs for 𝛼 and 𝛽  are determined by numerically 

solving the two nonlinear (8) and (9). 
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• Bayesian estimates for 𝛼 and 𝛽 are computed using the 

Lindley method with a dataset comprising 10,000 

observations. These estimations are conducted under three 

distinct balanced loss functions: BSE loss function (18), 

BLINEX loss function (14), and BGE loss function (20) with 

hyper-parameter 𝑑1 = 𝑑3 = 0.2 and 𝑑2 = 𝑑4 = 0.4. 

• The above steps are iterated 1,000 times to evaluate the 

performance of these estimates. 

• The simulation is executed with varying values for 𝑘, 𝑑, 

𝑇1 , and 𝑇2 , alongside the parameters 𝛼  and 𝛽 . We examine 

different combinations of (n, k, d) including (30, 15, 20), (50, 

20, 35), (50, 25, 30), (60, 30, 38), (50, 35, 45), and (50, 40, 

43). The pre-determined termination times (𝑇1, 𝑇2)  are also 

selected as (1, 1.3), (0.5, 1.4), (0.9, 1.5), (0.6, 1.7), (0.5, 1.2), 

and (0.4, 0.9).  

• Additionally, the RMSE of the estimators is calculated 

using the subsequent formula:  

RMSE(�̂�) = √∑1000𝑖=1
(�̂�𝑖−𝜓)

2

1000
.   (27) 

All of these findings are displayed in Tables 3–8 in 

Appendix C. 

8. Results Analysis and Discussion 

These simulations serve as invaluable tools for gauging the 

methods’ performance under a spectrum of scenarios, thereby 

affording profound insights into their relative effectiveness. 

Furthermore, these conclusions are substantiated by the 

analysis of Tables 3–8, which unequivocally demonstrate that 

the performance of Bayesian estimates for 𝛼, 𝛽, S(t) and h(t) 

surpasses that of MLEs in terms of RMSEs, and also we 

notice that when the sample size increases RMSEs decreases 

and when the 𝜈 increases RMSEs increases. 

We observe the following trends from the results: 

1. At 𝑎 = 0.3 , Bayes estimates under BGE outperform 

Bayes estimates under BLINEX and BSE, demonstrating the 

minimum RMSEs. 

2. Bayes estimates under BSE surpass Bayes estimates 

under MLE, showcasing the minimum RMSEs. 

3. Bayes estimates under BLINEX at 𝑎 = 0.3 and 𝑎 = 5 

outshine Bayes estimates under BSE, exhibiting the minimum 

RMSEs. 

4. Bayes estimates under BSE are superior to Bayes 

estimates under BLINEX and BGE at 𝑎 = −5, indicating the 

minimum RMSEs. 

5. At 𝑎 = 5, Bayes estimates under BLINEX excel over 

Bayes estimates under BGE and BSE, demonstrating the 

minimum RMSEs. 

9. Conclusions 

This investigation has been dedicated to the meticulous 

exploration of parameter estimation within the context of the 

IWD. Additionally, our inquiry has encompassed the 

estimation of the survival and hazard rate functions, 

particularly when the data is subject to observation under the 

UHCS mechanism. In this comprehensive endeavor, both the 

ML and Bayesian estimators have been harnessed for the 

purpose of deriving the pertinent parameters that define this 

lifetime distribution. To this end, we initially derive the MLEs 

as foundational components. 

Further advancing into the Bayesian realm, we delve into 

the derivation of Bayesian estimators through the application 

of the Lindley method, employing diverse loss functions such 

as BSE, BLINEX, and BGE. The outcomes of these 

estimators are then presented utilizing an actual dataset, 

adding practicality to our findings. Additionally, to 

comprehensively assess and compare the efficacy of the 

proposed methods, we have conducted an extensive 

simulation study. This study encompasses various sample 

sizes (d, k) and encompasses distinct scenarios (I, II, III, IV, V, 

VI). 

Lindley’s approximation method, also known as the 

Lindley equation or Lindley’s formula, is a statistical 

technique used for Bayesian analysis. While it has its merits, 

it also has some limitations. Here are a few: 

• Approximation Accuracy: Lindley’s approximation is, by 

nature, an approximation method. Its accuracy may be 

compromised in certain scenarios, especially when dealing 

with complex models or datasets with unique characteristics. 

• Sample Size Sensitivity: The method’s performance can 

be sensitive to sample size. In situations with small sample 

sizes, the approximation may not provide accurate results, and 

alternative Bayesian methods may be more appropriate. 

• Dependence on Priors: Lindley’s method, like many 

Bayesian approaches, relies on prior distributions. The results 

obtained can be sensitive to the choice of priors, and the 
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subjectivity in selecting them may pose a challenge in certain 

applications. 

• Complex Models: Lindley’s approximation might face 

limitations when applied to intricate statistical models. Its 

simplicity might not adequately capture the nuances of 

complex relationships within the data. 

• Computational Demands: For large datasets or models, 

Lindley’s method may pose computational challenges. Its 

efficiency could be a limiting factor when dealing with 

extensive and computationally demanding analyses. 

Prospects for Future Research: 

• Refinement of Approximation Techniques: Future 

research could focus on refining Lindley’s approximation 

method or developing alternative approximations that address 

its limitations. This may involve exploring more accurate 

approximations for specific scenarios or extending its 

applicability to a broader range of models. 

• Robustness Studies: Investigating the robustness of 

Lindley’s method across different types of data and model 

structures could be valuable. This research could identify 

conditions under which the method performs well and areas 

where improvements are needed. 

• Integration with Other Methods: Combining Lindley’s 

approximation with other Bayesian methods or statistical 

techniques may enhance its overall performance. Research 

could explore hybrid approaches that leverage the strengths of 

various methods to provide more robust and accurate results. 

• Handling Complex Models: Addressing the limitations 

associated with complex models is crucial. Future research 

may focus on developing Bayesian methods that can 

effectively handle intricate statistical models without 

sacrificing accuracy or computational efficiency. 

• User-Friendly Implementation: Simplifying the 

implementation of Lindley’s method or creating user-friendly 

tools could broaden its accessibility. This would facilitate its 

adoption by researchers and practitioners who may not have 

extensive expertise in Bayesian statistics. 

• Real-world Applications: Further research could 

concentrate on applying Lindley’s method to a diverse set of 

real-world problems to assess its performance in practical 

settings. Understanding its strengths and limitations in various 

applications can guide researchers in choosing appropriate 

statistical tools. 

• By addressing these aspects, future research can 

contribute to refining Lindley’s approximation method and 

expanding its applicability in Bayesian analysis.
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Appendix A 

Abbreviations used in this manuscript 

Abbrevia

tion 
Meaning 

UHCS Unified Hybrid Censoring Scheme 

IWD Inverse Weibull Distribution 

PDF Probability Density Function 

CDF Cumulative Distribution Function 

MLEs Maximum Likelihood Estimators 

BSE 
Balanced Squared Error Loss 

Function 

BLINEX 
Balanced Linear Exponential Loss 

Function 

BGE 
Balanced General Entropy Loss 

Function 

ML Maximum Likelihood 

FIM Fisher Information Matrix 

RMSEs Root Mean Squared Errors 

K-S Kolmogorov-Smirnov 

Appendix B 

The remission times, measured in months, are provided below 0.08, 2.09, 3.48, 4.87, 6.94, 8.66, 13.11, 23.63, 0.20, 2.23, 3.52, 

4.98, 6.97, 9.02, 13.29, 0.40, 2.26, 3.57, 5.06, 7.09, 9.22, 13.80, 25.74, 0.50, 2.46, 3.64, 5.09, 7.26, 9.47, 14.24, 25.82, 0.51, 

2.54, 3.70, 5.17, 7.28, 9.74, 14.76, 26.31, 0.81, 2.62, 3.82, 5.32, 7.32, 10.06, 14.77, 32.15, 2.64, 3.88, 5.32, 7.39, 10.34, 14.83, 

34.26, 0.90, 2.69, 4.18, 5.34, 7.59, 10.66, 15.96, 36.66, 1.05, 2.69, 4.23, 5.41, 7.62, 10.75, 16.62, 43.01, 1.19, 2.75, 4.26, 5.41, 

7.63, 17.12, 46.12, 1.26, 2.83, 4.33, 5.49, 7.66, 11.25, 17.14, 79.05, 1.35, 2.87, 5.62, 7.87, 11.64, 17.36, 1.40, 3.02, 4.34, 5.71, 

7.93, 11.79, 18.10, 1.46, 4.40, 5.85, 8.26, 11.98, 19.13, 1.76, 3.25, 4.50, 6.25, 8.37, 12.02, 2.02, 3.31, 4.51, 6.54, 8.53, 12.03, 

20.28, 2.02, 3.36, 6.76, 12.07, 21.73, 2.07, 3.36, 6.93, 8.65, 12.63, 22.69. 
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Appendix C 

Table 1. Estimating 𝛼, 𝛽, 𝑆(𝑡), and ℎ(𝑡) using MLE and Lindley method for real data. 

 BLINEX    BGE  
 

Cases Parameters MLE ν BSE a = -5 a = 0.3 a =5  a = -5 a = 0.3 a = 5 

Case I β 2.415 0.0 2.408 2.505 2.401 2.316  2.447 2.395 2.353  

   0.3 2.410 2.482 2.401 2.341  2.438 2.401 2.371  

   0.9 2.415 2.426 2.414 2.403  2.418 2.413 2.409  

 α 0.712 0.0 0.710 0.714 0.709 0.705  0.715 0.708 0.702  

   0.3 0.710 0.714 0.710 0.707  0.714 0.709 0.705  

   0.9 0.712 0.712 0.712 0.711  0.712 0.711 0.711  

 S(t) 0.911 0.0 0.909 0.910 0.909 0.908  0.910 0.909 0.908  

   0.3 0.910 0.910 0.910 0.909  0.910 0.910 0.909  

   0.9 0.911 0.911 0.911 0.911  0.911 0.911 0.911  

 h(t) 0.461 0.0 0.465 0.479 0.465 0.451  0.488 0.457 0.433  

   0.3 0.464 0.474 0.463 0.454  0.480 0.458 0.440  

   0.9 0.461 0.463 0.461 0.460  0.464 0.461 0.458  

Case II β 2.413 0.0 2.405 2.503 2.398 2.313  2.444 2.392 2.350  

   0.3 2.407 2.480 2.398 2.338  2.435 2.398 2.368  

   0.9 2.412 2.424 2.411 2.400  2.416 2.411 2.406  

 α 0.697 0.0 0.695 0.700 0.694 0.690  0.700 0.693 0.687  

   0.3 0.695 0.699 0.695 0.692  0.699 0.694 0.690  

   0.9 0.697 0.697 0.697 0.696  0.697 0.697 0.696  

 S(t) 0.915 0.0 0.912 0.913 0.912 0.911  0.913 0.912 0.911  

   0.3 0.913 0.914 0.913 0.912  0.914 0.913 0.912  

   0.9 0.914 0.914 0.914 0.914  0.914 0.914 0.914  

 h(t) 0.444 0.0 0.448 0.462 0.448 0.434  0.471 0.440 0.416  

   0.3 0.447 0.457 0.447 0.437  0.463 0.441 0.423  

   0.9 0.445 0.446 0.444 0.443  0.447 0.444 0.441  

Case III β 2.422 0.0 2.415 2.511 2.408 2.323  2.454 2.402 2.360  

   0.3 2.417 2.489 2.408 2.348  2.444 2.408 2.378  

   0.9 2.421 2.433 2.421 2.410  2.425 2.420 2.415  

 α 0.735 0.0 0.733 0.737 0.733 0.728  0.738 0.731 0.726  

   0.3 0.733 0.737 0.733 0.730  0.737 0.732 0.728  

   0.9 0.735 0.735 0.735 0.734  0.735 0.734 0.734  

 S(t) 0.906 0.0 0.904 0.905 0.904 0.903  0.905 0.904 0.903  

   0.3 0.905 0.906 0.905 0.904  0.905 0.905 0.904  

   0.9 0.906 0.906 0.906 0.906  0.906 0.906 0.906  

 h(t) 0.487 0.0 0.491 0.506 0.490 0.476  0.514 0.483 0.459  

   0.3 0.490 0.500 0.489 0.479  0.506 0.484 0.466  

   0.9 0.487 0.489 0.487 0.486  0.490 0.486 0.483  

Case IV β 2.415 0.0 2.407 2.504 2.400 2.316  2.446 2.394 2.353  

   0.3 2.410 2.482 2.400 2.341  2.437 2.401 2.370  

   0.9 2.414 2.426 2.413 2.402  2.418 2.413 2.408  

 α 0.710 0.0 0.708 0.712 0.707 0.703  0.713 0.706 0.700  

   0.3 0.708 0.712 0.708 0.705  0.712 0.707 0.703  

   0.9 0.710 0.710 0.710 0.709  0.710 0.709 0.709  

 S(t) 0.912 0.0 0.910 0.910 0.909 0.909  0.910 0.909 0.908  

   0.3 0.910 0.911 0.910 0.910  0.911 0.910 0.909  

   0.9 0.911 0.912 0.911 0.911  0.912 0.911 0.911  

 h(t) 0.459 0.0 0.463 0.477 0.462 0.449  0.486 0.455 0.431  

   0.3 0.462 0.472 0.461 0.452  0.478 0.456 0.438  

   0.9 0.459 0.461 0.459 0.458  0.462 0.458 0.455  
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 Table 2. Cont. 

      BLINEX    BGE   

Cases Parameters MLE ν BSE a = -5 a = 0.3 a =5  a = -5 a = 0.3 a = 5  

Case V β 2.41473 0.0 2.407 2.504 2.40 2.315  2.446 2.394 2.352  

   0.3 2.409 2.481 2.400 2.340  2.437 2.400 2.370  

   0.9 2.414 2.425 2.413 2.402  2.418 2.412 2.408  

 α 0.707 0.0 0.705 0.710 0.705 0.701  0.711 0.704 0.697  

   0.3 0.706 0.709 0.706 0.703  0.710 0.705 0.700  

   0.9 0.707 0.708 0.707 0.707  0.708 0.707 0.706  

 S(t) 0.912 0.0 0.910 0.911 0.910 0.909  0.911 0.910 0.909  

   0.3 0.911 0.911 0.911 0.910  0.911 0.910 0.910  

   0.9 0.912 0.912 0.912 0.912  0.912 0.912 0.912  

 h(t) 0.456 0.0 0.461 0.474 0.460 0.446  0.483 0.452 0.428  

   0.3 0.459 0.469 0.459 0.449  0.476 0.453 0.435  

   0.9 0.457 0.458 0.457 0.455  0.459 0.456 0.453  

Case VI β 2.412 0.0 2.404 2.502 2.397 2.312  2.444 2.391 2.349  

   0.3 2.406 2.479 2.397 2.337  2.434 2.397 2.367  

   0.9 2.411 2.423 2.410 2.399  2.415 2.410 2.405  

 α 0.688 0.0 0.685 0.690 0.685 0.680  0.691 0.683 0.677  

   0.3 0.686 0.689 0.686 0.683  0.690 0.685 0.680  

   0.9 0.687 0.688 0.687 0.687  0.688 0.687 0.687  

 S(t) 0.917 0.0 0.915 0.915 0.914 0.914  0.915 0.914 0.913  

   0.3 0.915 0.916 0.915 0.915  0.916 0.915 0.914  

   0.9 0.916 0.917 0.916 0.916  0.917 0.916 0.916  

 h(t) 0.433 0.0 0.438 0.451 0.437 0.424  0.460 0.429 0.405  

   0.3 0.437 0.446 0.436 0.427  0.453 0.431 0.413  

   0.9 0.434 0.435 0.434 0.433  0.436 0.433 0.430  

 

Table 3. Average estimates and RMSEs in bold for 𝛼, 𝛽, 𝑆, and ℎ for Case I. 

 BLINEX    BGE  
 

Parameters MLE ν BSE a = -5 a = 0.3 a =5  a = -5 a = 0.3 a = 5 

β 1.876 0.0 1.869 1.964 1.964 1.779  1.917 1.853 1.804  

 0.651  0.645 0.740 0.637 0.554  0.692 0.692 0.581  

  0.3 1.871 1.941 1.866 1.803  1.905 1.860 1.824  

   0.647 0.719 0.641 0.577  0.680 0.636 0.600  

  0.6 1.873 1.916 1.870 1.831  1.893 1.867 1.845  

   0.648 0.692 0.645 0.605  0.667 0.642 0.621  

  0.9 1.875 1.887 1.874 1.864  1.880 1.873 1.868  

   0.650 0.662 0.649 0.638  0.655 0.648 0.643  

α 3.244 0.0 3.052 3.503 3.015 2.916  3.234 3.007 2.917  

 1.050  0.813 1.277 0.781 0.834  0.977 0.786 0.763  

  0.3 3.110 3.456 3.081 2.970  3.237 3.075 2.994  

   0.883 1.242 0.853 0.852  1.000 0.857 0.818  

  0.6 3.167 3.393 3.149 3.043  3.240 3.146 3.085  

   0.954 1.195 0.932 0.886  1.047 0.936 0.894  

  0.9 3.224 3.297 3.219 3.167  3.243 3.219 3.199  

   1.026 1.111 1.019 0.970  1.044 1.020 1.003  

S(t) 0.969 0.0 0.695 0.704 0.695 0.688  0.705 0.693 0.684  

 0.031  0.284 0.275 0.286 0.293  0.275 0.288 0.296  

  0.3 0.702 0.708 0.701 0.696  0.709 0.700 0.693  

   0.279 0.273 0.279 0.284  0.272 0.282 0.289  

  0.6 0.708 0.712 0.708 0.705  0.712 0.707 0.702  

   0.273 0.270 0.273 0.277  0.270 0.275 0.279  

  0.9 0.714 0.715 0.714 0.713  0.715 0.714 0.713  

   0.268 0.268 0.268 0.270  0.268 0.268 0.270  

h(t) 0.151 0.0 0.663 0.689 0.661 0.629  0.693 0.649 0.603  

 0.100  0.583 0.611 0.582 0.548  0.614 0.570 0.524  

  0.3 0.654 0.674 0.653 0.630  0.678 0.644 0.611  

   0.332 0.356 0.330 0.303  0.360 0.320 0.284  

  0.6 0.646 0.658 0.645 0.632  0.661 0.640 0.620  
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   0.567 0.580 0.566 0.553  0.583 0.562 0.542  

  0.9 0.637 0.641 0.637 0.634  0.641 0.636 0.631  

   0.559 0.563 0.559 0.555  0.563 0.558 0.553  

Table 4. Average estimates and RMSEs in bold for 𝛼, 𝛽, 𝑆, and ℎ for Case II.  

     BLINEX    BGE   

Parameters MLE ν BSE a = -5 a = 0.3 a =5  a = -5 a = 0.3 a = 5  

β 1.602 0.0 1.600 1.670 1.670 1.532  1.639 1.587 1.546  

 0.375  0.372 0.441 0.368 0.308  0.409 0.360 0.322  

  0.3 1.601 1.652 1.597 1.550  1.6291 1.592 1.561  

   0.374 0.424 0.370 0.325  0.400 0.364 0.337  

  0.6 1.601 1.632 1.599 1.571  1.617 1.596 1.578  

   0.374 0.404 0.372 0.344  0.388 0.368 0.352  

  0.9 1.602 1.610 1.601 1.594  1.606 1.601 1.596  

   0.374 0.383 0.374 0.366  0.378 0.372 0.372  

α 2.997 0.0 2.846 3.240 2.812 2.687  3.014 2.800 2.705  

 0.667  0.543 0.846 0.523 0.545  0.648 0.526 0.517  

  0.3 2.891 3.194 2.866 2.740  3.009 2.857 2.775  

   0.577 0.815 0.559 0.457  0.653 0.561 0.538  

  0.6 2.936 3.133 2.921 2.812  3.004 2.916 2.857  

   0.614 0.772 0.602 0.562  0.659 0.602 0.575  

  0.9 2.982 3.042 2.978 2.930  2.999 2.976 2.958  

   0.653 0.705 0.649 0.616  0.664 0.664 0.638  

S(t) 0.763 0.0 0.743 0.750 0.742 0.737  0.750 0.740 0.734  

 0.221  0.240 0.232 0.240 0.246  0.232 0.242 0.248  

  0.3 0.749 0.754 0.748 0.744  0.754 0.747 0.742  

   0.234 0.228 0.234 0.238  0.228 0.236 0.240  

  0.6 0.755 0.758 0.755 0.752  0.758 0.754 0.751  

   0.228 0.225 0.228 0.232  0.225 0.230 0.232  

  0.9 0.761 0.762 0.761 0.760  0.762 0.761 0.760  

   0.223 0.221 0.223 0.223  0.221 0.223 0.223  

h(t) 0.510 0.0 0.536 0.554 0.535 0.513  0.561 0.524 0.485  

 0.433  0.458 0.477 0.457 0.433  0.483 0.446 0.407  

  0.3 0.528 0.542 0.527 0.512  0.548 0.520 0.491  

   0.450 0.465 0.449 0.433  0.459 0.442 0.414  

  0.6 0.520 0.529 0.520 0.511  0.533 0.515 0.499  

   0.443 0.452 0.442 0.433  0.456 0.439 0.421  

  0.9 0.512 0.515 0.512 0.510  0.516 0.511 0.507  

   0.435 0.438 0.435 0.433  0.439 0.434 0.431  

Table 5. Average estimates and RMSEs in bold for 𝛼, 𝛽, 𝑆, and ℎ for Case III. 

     BLINEX    BGE   

Parameters MLE ν BSE a = -5 a = 0.3 a =5  a = -5 a = 0.3 a = 5  

β 1.555 0.0 1.553 1.618 1.618 1.489  1.590 1.541 1.501  

 0.334  0.334 0.396 0.330 0.275  0.368 0.324 0.288  

  0.3 1.554 1.601 1.550 1.507  1.580 1.545 1.516  

   0.334 0.380 0.331 0.289  0.359 0.327 0.308  

  0.6 1.554 1.582 1.552 1.526  1.569 1.549 1.532  

   0.334 0.361 0.333 0.308  0.349 0.330 0.314  

  0.9 1.554 1.562 1.554 1.547  1.558 1.553 1.549  

   0.334 0.342 0.334 0.327  0.339 0.334 0.330  

α 2.988 0.0 2.849 3.223 2.817 2.689  3.007 2.805 2.711  

 0.634  0.515 0.808 0.495 0.517  0.617 0.498 0.488  

  0.3 2.890 3.178 2.867 2.740  3.001 2.858 2.778  

   0.548 0.777 0.531 0.518  0.622 0.531 0.508  

  0.6 2.932 3.118 2.918 2.811  2.996 2.913 2.857  

   0.583 0.736 0.571 0.532  0.626 0.571 0.545  

  0.9 2.974 3.031 2.970 2.925  2.990 2.969 2.951  

   0.621 0.670 0.617 0.584  0.631 0.617 0.605  

S(t) 0.776 0.0 0.757 0.763 0.756 0.751  0.764 0.755 0.749  

 0.204  0.221 0.214 0.223 0.228  0.214 0.223 0.230  
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     BLINEX    BGE   

Parameters MLE ν BSE a = -5 a = 0.3 a =5  a = -5 a = 0.3 a = 5  

  0.3 0.762 0.767 0.762 0.758  0.767 0.761 0.756 

   0.216 0.212 0.216 0.221  0.212 0.219 0.223 

  0.6 0.768 0.771 0.768 0.766  0.771 0.767 0.764 

   0.212 0.209 0.212 0.214  0.207 0.212 0.216 

  0.9 0.774 0.775 0.774 0.773  0.775 0.774 0.773 

   0.207 0.204 0.207 0.207  0.204 0.207 0.207 

h(t) 0.484 0.0 0.508 0.525 0.507 0.487  0.532 0.497 0.459 

 0.403  0.426 0.444 0.425 0.404  0.451 0.415 0.378 

  0.3 0.501 0.514 0.500 0.486  0.520 0.493 0.466 

   0.419 0.433 0.418 0.403  0.438 0.412 0.384 

  0.6 0.493 0.501 0.493 0.485  0.506 0.489 0.473 

   0.412 0.420 0.412 0.403  0.424 0.408 0.392 

  0.9 0.486 0.488 0.486 0.484  0.490 0.485 0.481 

   0.406 0.407 0.406 0.403  0.167 0.404 0.400 

 

 

Table 6. Average estimates and RMSEs in bold for 𝛼, 𝛽, 𝑆, and ℎ for Case IV. 

     BLINEX    BGE   

Parameters MLE ν BSE a = -5 a = 0.3 a =5  a = -5 a = 0.3 a = 5  

β 2.182 0.0 2.166 2.293 2.293 2.054  2.224 2.147 2.090  

 0.955  0.939 1.069 0.928 0.824  0.997 0.920 0.862  

  0.3 2.171 2.266 2.164 2.084  2.212 2.157 2.115  

   0.944 1.042 0.937 0.854  0.985 0.930 0.887  

  0.6 2.176 2.234 2.172 2.120  2.199 2.168 2.142  

   0.949 1.009 0.944 0.891  0.973 0.941 0.915  

  0.9 2.180 2.196 2.179 2.164  2.186 2.178 2.171  

   0.953 0.970 0.952 0.937  0.959 0.951 0.944  

α 2.513 0.0 2.401 2.717 2.376 2.254  2.547 2.361 2.274  

 0.658  0.630 0.684 0.634 0.722  0.617 0.644 0.696  

  0.3 2.435 2.676 2.416 2.302  2.537 2.405 2.331  

   0.634 0.679 0.635 0.698  0.629 0.642 0.676  

  0.6 2.469 2.623 2.457 2.365  2.527 2.451 2.399  

   0.642 0.674 0.641 0.671  0.641 0.645 0.659  

  0.9 2.502 2.548 2.499 2.462  2.517 2.497 2.481  

   0.654 0.664 0.653 0.651  0.654 0.654 0.654  

S(t) 0.551 0.0 0.539 0.552 0.538 0.527  0.558 0.533 0.516  

 0.431  0.442 0.431 0.442 0.423  0.423 0.448 0.464  

  0.3 0.542 0.552 0.542 0.534  0.556 0.538 0.525  

   0.439 0.430 0.439 0.200  0.181 0.443 0.456  

  0.6 0.546 0.551 0.546 0.541  0.554 0.544 0.536  

   0.435 0.430 0.435 0.441  0.427 0.438 0.446  

  0.9 0.550 0.558 0.550 0.549  0.552 0.549 0.547  

   0.432 0.431 0.432 0.433  0.430 0.432 0.434  

h(t) 0.933 0.0 0.945 0.994 0.942 0.892  0.988 0.929 0.881  

 0.860  0.871 0.920 0.867 0.816  0.913 0.854 0.806  

  0.3 0.942 0.978 0.939 0.903  0.973 0.931 0.895  

   0.867 0.904 0.865 0.828  0.898 0.856 0.820  

  0.6 0.938 0.960 0.937 0.915  0.957 0.932 0.910  

   0.864 0.887 0.863 0.840  0.883 0.857 0.836  

  0.9 0.935 0.940 0.934 0.929  0.940 0.933 0.927  

   0.861 0.867 0.860 0.854  0.866 0.859 0.853  
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Table 7. Average estimates and RMSEs in bold for 𝛼, 𝛽, 𝑆, and ℎ for Case V. 

     BLINEX    BGE   

Parameters MLE ν BSE a = -5 a = 0.3 a =5  a = -5 a = 0.3 a = 5  

β 1.630 0.0 1.627 1.699 1.699 1.557  1.667 1.614 1.572  

 0.412  0.409 0.480 0.404 0.342  0.447 0.397 0.359  

  0.3 1.628 1.681 1.624 1.576  1.656 1.619 1.588  

   0.411 0.462 0.407 0.360  0.437 0.402 0.374  

  0.6 1.629 1.660 1.627 1.597  1.645 1.623 1.605  

   0.411 0.442 0.408 0.380  0.426 0.406 0.389  

  0.9 1.630 1.638 1.629 1.621  1.634 1.628 1.623  

   0.412 0.420 0.411 0.403  0.415 0.411 0.406  

α 2.920 0.0 2.775 3.154 2.743 2.621  2.938 2.731 2.639  

 0.676  0.564 0.835 0.457 0.584  0.653 0.553 0.554  

  0.3 2.818 3.109 2.795 2.672  2.933 2.786 2.706  

   0.594 0.807 0.579 0.582  0.660 0.582 0.568  

  0.6 2.862 3.050 2.847 2.743  2.927 2.842 2.785  

   0.628 0.770 0.617 0.855  0.667 0.618 0.597  

  0.9 2.905 2.963 2.901 2.856  2.922 2.900 2.882  

   0.664 0.637 0.660 0.630  0.673 0.660 0.651  

S(t) 0.747 0.0 0.727 0.734 0.726 0.720  0.735 0.724 0.717  

 0.236  0.254 0.246 0.254 0.260  0.244 0.256 0.264  

  0.3 0.733 0.738 0.732 0.728  0.739 0.731 0.725  

   0.248 0.242 0.248 0.252  0.242 0.250 0.256  

  0.6 0.739 0.742 0.738 0.736  0.742 0.737 0.734  

   0.242 0.240 0.242 0.246  0.238 0.244 0.248  

  0.9 0.745 0.745 0.744 0.744  0.745 0.744 0.743  

   0.238 0.236 0.238 0.238  0.236 0.238 0.238  

h(t) 0.538 0.0 0.563 0.583 0.562 0.538  0.589 0.551 0.512  

 0.460  0.484 0.504 0.482 0.458  0.509 0.472 0.433  

  0.3 0.556 0.570 0.555 0.538  0.576 0.547 0.519  

   0.477 0.292 0.476 0.459  0.523 0.472 0.440  

  0.6 0.548 0.557 0.547 0.538  0.561 0.543 0.526  

   0.470 0.479 0.469 0.459  0.482 0.465 0.448  

  0.9 0.541 0.543 0.540 0.538  0.544 0.539 0.535  

   0.462 0.465 0.462 0.460  0.466 0.461 0.457  

Table 8. Average estimates and RMSEs in bold for 𝛼, 𝛽, 𝑆, and ℎ for Case VI. 

     BLINEX    BGE   

Parameters MLE ν BSE a = -5 a = 0.3 a =5  a = -5 a = 0.3 a = 5  

β 1.560 0.0 1.558 1.623 1.623 1.493  1.595 1.545 1.505  

 0.336  0.334 0.397 0.330 0.273  0.368 0.322 0.288  

  0.3 1.558 1.607 1.555 1.511  1.585 1.550 1.521  

   0.334 0.380 0.331 0.289  0.359 0.327 0.301  

  0.6 1.559 1.588 1.557 1.531  1.575 1.554 1.537  

   0.334 0.363 0.333 0.308  0.349 0.330 0.314  

  0.9 1.560 1.567 1.559 1.552  1.564 1.559 1.554  

   0.336 0.343 0.336 0.328  0.339 0.334 0.330  

α 2.947 0.0 2.801 3.184 2.768 2.644  2.965 2.757 2.663  

 0.653  0.542 0.819 0.524 0.555  0.634 0.529 0.527  

  0.3 2.845 3.138 2.821 2.696  2.960 2.812 2.731  

   0.527 0.789 0.556 0.553  0.639 0.558 0.542  

  0.6 2.888 3.079 2.874 2.767  2.954 2.868 2.811  

   0.572 0.750 0.594 0.562  0.645 0.594 0.572  

  0.9 2.932 2.990 2.928 2.882  2.948 2.927 2.909  
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     BLINEX    BGE   

Parameters MLE ν BSE a = -5 a = 0.3 a =5  a = -5 a = 0.3 a = 5  

   0.641 0.689 0.637 0.607  0.651 0.637 0.627  

S(t) 0.769 0.0 0.749 0.756 0.748 0.743  0.756 0.746 0.740  

 0.212  0.232 0.223 0.232 0.238  0.223 0.234 0.240  

  0.3 0.755 0.760 0.754 0.750  0.760 0.753 0.748  

   0.225 0.221 0.225 0.230  0.221 0.228 0.232  

  0.6 0.761 0.764 0.760 0.758  0.764 0.760 0.756  

   0.221 0.216 0.221 0.223  0.216 0.221 0.225  

  0.9 0.767 0.767 0.767 0.766  0.767 0.766 0.765  

   0.214 0.214 0.214 0.216  0.214 0.214 0.216  

h(t) 0.493 0.0 0.519 0.536 0.517 0.497  0.543 0.507 0.469  

 0.413  0.437 0.454 0.435 0.414  0.461 0.425 0.388  

  0.3 0.511 0.524 0.510 0.496  0.530 0.503 0.475  

   0.430 0.443 0.428 0.413  0.449 0.421 0.394  

  0.6 0.504 0.512 0.503 0.495  0.516 0.499 0.482  

   0.423 0.431 0.421 0.413  0.434 0.418 0.402  

  0.9 0.496 0.498 0.496 0.494  0.499 0.495 0.491  

   0.415 0.418 0.415 0.413  0.419 0.414 0.411  

 

 


